Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 880: 163260, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028665

RESUMO

Insect outbreaks affect forest structure and function and represent a major category of forest disturbance globally. However, the resulting impacts on evapotranspiration (ET), and especially hydrological partitioning between the abiotic (evaporation) and biotic (transpiration) components of total ET, are not well constrained. As a result, we combined remote sensing, eddy covariance, and hydrological modeling approaches to determine the effects of bark beetle outbreak on ET and its partitioning at multiple scales throughout the Southern Rocky Mountain Ecoregion (SRME), USA. At the eddy covariance measurement scale, 85 % of the forest was affected by beetles, and water year ET as a fraction of precipitation (P) decreased by 30 % relative to a control site, with 31 % greater reductions in growing season transpiration relative to total ET. At the ecoregion scale, satellite remote sensing masked to areas of >80 % tree mortality showed corresponding ET/P reductions of 9-15 % that occurred 6-8 years post-disturbance, and indicated that the majority of the total reduction occurred during the growing season; the Variable Infiltration Capacity hydrological model showed an associated 9-18 % increase in the ecoregion runoff ratio. Long-term (16-18 year) ET and vegetation mortality datasets extend the length of previously published analyses and allowed for clear characterization of the forest recovery period. During that time, transpiration recovery outpaced total ET recovery, which was lagged in part due to persistently reduced winter sublimation, and there was associated evidence of increasing late summer vegetation moisture stress. Overall, comparison of three independent methods and two partitioning approaches demonstrated a net negative impact of bark beetles on ET, and a relatively greater negative impact on transpiration, following bark beetle outbreak in the SRME.


Assuntos
Besouros , Gorgulhos , Animais , Casca de Planta , Florestas , Árvores
2.
Glob Chang Biol ; 28(16): 4794-4806, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452156

RESUMO

Earth's ecosystems are increasingly threatened by "hot drought," which occurs when hot air temperatures coincide with precipitation deficits, intensifying the hydrological, physiological, and ecological effects of drought by enhancing evaporative losses of soil moisture (SM) and increasing plant stress due to higher vapor pressure deficit (VPD). Drought-induced reductions in gross primary production (GPP) exert a major influence on the terrestrial carbon sink, but the extent to which hotter and atmospherically drier conditions will amplify the effects of precipitation deficits on Earth's carbon cycle remains largely unknown. During summer and autumn 2020, the U.S. Southwest experienced one of the most intense hot droughts on record, with record-low precipitation and record-high air temperature and VPD across the region. Here, we use this natural experiment to evaluate the effects of hot drought on GPP and further decompose those negative GPP anomalies into their constituent meteorological and hydrological drivers. We found a 122 Tg C (>25%) reduction in GPP below the 2015-2019 mean, by far the lowest regional GPP over the Soil Moisture Active Passive satellite record. Roughly half of the estimated GPP loss was attributable to low SM (likely a combination of record-low precipitation and warming-enhanced evaporative depletion), but record-breaking VPD amplified the reduction of GPP, contributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very likely to continue increasing over the next century, likely leading to more frequent and intense hot droughts and substantially enhancing drought-induced GPP reductions.


Assuntos
Secas , Ecossistema , Ciclo do Carbono , Temperatura Alta , Solo
3.
Glob Chang Biol ; 26(12): 6945-6958, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886444

RESUMO

High-elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying. At colder locations, the seasonal evolution of gross primary productivity (GPP) was characterized by a single broad maximum during the summer that corresponded to snow melt-derived moisture and a transition from winter dormancy to spring activity. Conversely, winter dormancy was transient at warmer locations, and GPP was responsive to both winter and summer precipitation such that two distinct GPP maxima were separated by a period of foresummer drought. This resulted in a predictable sequence of primary limiting factors to GPP beginning with air temperature in winter and proceeding to moisture and leaf area during the summer. Due to counteracting winter (positive) and summer (negative) GPP responses to warming, leaf area index and moisture availability were the best predictors of annual GPP differences across sites. Overall, mean annual GPP was greatest at the warmest site due to persistent vegetation photosynthetic activity throughout the winter. These results indicate that the trajectory of this region's carbon sequestration will be sensitive to reduced or delayed summer precipitation, especially if coupled to snow drought and earlier soil moisture recession, but summer precipitation changes remain highly uncertain. Given the demonstrated potential for seasonally offsetting responses to warming, we project that decadal semiarid montane forest carbon sequestration will remain relatively stable in the absence of severe disturbance.


Assuntos
Ecossistema , Florestas , Carbono , Mudança Climática , Estações do Ano , Neve
4.
Tree Physiol ; 40(10): 1343-1354, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32597974

RESUMO

Semiarid forests in the southwestern USA are generally restricted to mountain regions where complex terrain adds to the challenge of characterizing stand productivity. Among the heterogeneous features of these ecosystems, topography represents an important control on system-level processes including snow accumulation and melt. This basic relationship between geology and hydrology affects radiation and water balances within the forests, with implications for canopy structure and function across a range of spatial scales. In this study, we quantify the effect of topographic aspect on primary productivity by observing the response of two codominant native tree species to seasonal changes in the timing and magnitude of energy and water inputs throughout a montane headwater catchment in Arizona, USA. On average, soil moisture on north-facing aspects remained higher during the spring and early summer compared with south-facing aspects. Repeated measurements of net carbon assimilation (Anet) showed that Pinus ponderosa C. Lawson was sensitive to this difference, while Pseudotsuga menziesii (Mirb.) Franco was not. Irrespective of aspect, we observed seasonally divergent patterns at the species level where P. ponderosa maintained significantly greater Anet into the fall despite more efficient water use by P. menziesii individuals during that time. As a result, this study at the southern extent of the geographical P. menziesii distribution suggests that this species could increase water-use efficiency as a response to future warming and/or drying, but at lower rates of production relative to the more drought-adapted P. ponderosa. At the sub-landscape scale, opposing aspects served as a mesocosm of current versus anticipated climate conditions. In this way, these results also constrain the potential for changing carbon sequestration patterns from Pinus-dominated landscapes due to forecasted changes in seasonal moisture availability.


Assuntos
Ecossistema , Florestas , Arizona , Estações do Ano , Árvores
5.
Nat Commun ; 10(1): 1306, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898997

RESUMO

High-latitude warming is capable of accelerating permafrost degradation and the decomposition of previously frozen carbon. The existence of an analogous high-altitude feedback, however, has yet to be directly evaluated. We address this knowledge gap by coupling a radiocarbon-based model to 7 years (2008-2014) of continuous eddy covariance data from a snow-scoured alpine tundra meadow in Colorado, USA, where solifluction lobes are associated with discontinuous permafrost. On average, the ecosystem was a net annual source of 232 ± 54 g C m-2 (mean ± 1 standard deviation) to the atmosphere, and respiration of relatively radiocarbon-depleted (i.e., older) substrate contributes to carbon emissions during the winter. Given that alpine soils with permafrost occupy 3.6 × 106 km2 land area and are estimated to contain 66.3 Pg of soil organic carbon (4.5% of the global pool), this scenario has global implications for the mountain carbon balance and corresponding resource allocation to lower elevations.

6.
Sci Rep ; 8(1): 17973, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30568298

RESUMO

Growing season length (GSL) is a key unifying concept in ecology that can be estimated from eddy covariance-derived estimates of net ecosystem production (NEP). Previous studies disagree on how increasing GSLs may affect NEP in evergreen coniferous forests, potentially due to the variety of methods used to quantify GSL from NEP. We calculated GSL and GSL-NEP regressions at eleven evergreen conifer sites across a broad climatic gradient in western North America using three common approaches: (1) variable length (3-7 days) regressions of day of year versus NEP, (2) a smoothed threshold approach, and (3) the carbon uptake period, followed by a new approach of a method-averaged ensemble. The GSL and the GSL-NEP relationship differed among methods, resulting in linear relationships with variable sign, slope, and statistical significance. For all combinations of sites and methods, the GSL explained between 6% and 82% of NEP with p-values ranging from 0.45 to < 0.01. These results demonstrate the variability among GSL methods and the importance of selecting an appropriate method to accurately project the ecosystem carbon cycling response to longer growing seasons in the future. To encourage this approach in future studies, we outline a series of best practices for GSL method selection depending on research goals and the annual NEP dynamics of the study site(s). These results contribute to understanding growing season dynamics at ecosystem and continental scales and underscore the potential for methodological variability to influence forecasts of the evergreen conifer forest response to climate variability.


Assuntos
Ecossistema , Florestas , Estações do Ano , Traqueófitas , Árvores , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...